
PHEBCS: Passive House Exterior Blinds Control
System

Analog Electronics Laboratory
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Julia Arnold
jul@mit.edu

Nancy Hidalgo
nancyhid@mit.edu

Abstract—Passive houses primarily rely on their architecture
and the environment to maintain a comfortable temperature for
their residents. Specifically, they have large windows on the south-
side with large eaves that block the high sun in the summer
and allow for more sunlight in the winter when the sun is low.
This energy harvesting can be facilitated with exterior blinds
on the south side with a sensor-controlled system, PHEBCS.
PHEBCS uses readings from commercial temperature and wind
speed sensors to determine when to raise and lower the blinds to
keep the temperature inside the house within the desired range.
These sensors will use an RF communication scheme to send
information to an Raspberry Pi inside the house that will then
communicate with the blinds to raise and lower them. In the
event of power outages or other extenuating circumstances, the
system must continue functioning; therefore, another aspect of
the project was to design a power supply system.

I. PROBLEM DEFINITION AND BACKGROUND

Passive houses take advantage of and largely rely on natural
phenomena to heat and cool the interior. Harvesting energy by
leveraging environmental sources reduces the cost of energy
and the use of non-renewable energy sources. For example,
the windows are designed so that in the summer, the high
summer sun doesn’t directly enter the house, but the lower
and less intense winter sun does. See Figure 1 for a diagram
of this effect.

To provide more control over the indoor temperature, there
are also exterior blinds on all of the windows that are manually
controlled with a remote. The blinds can be manually lowered
when the indoor temperature gets too hot, or raised when the
wind speed gets too high, since high winds could damage the
blinds. The goal of this project was to design a system that
automatically raises and lowers the blinds, based on the indoor
temperature and the outdoor wind speed in order to increase
convenience and optimize energy collection. Additionally, a
power supply for this system is included so that in the case
of a power outage, the system would continue to function.

The overall goal was to design and build a system that would
automatically raise and lower the blinds based on current wind
and temperature conditions. The system is totally autonomous
in determining whether to raise or lower the blinds based
on interior temperature with built in protection from wind

Fig. 1. Diagram of Passive House

damage. If the residents still want to manually control the
blinds (i.e. to make a room darker) the remotes are still
functional.

The system was designed with several constraints in mind.
First, the remote for the blinds operates at a frequency of 433
MHz. Next, the placement of both the wind and temperature
sensors relative to each other posed a challenge. The wind
sensor had to be placed outside, and far enough away from
the house to get an accurate measurement of the wind speed.
Meanwhile, the temperature sensor had to be placed inside
with the Raspberry Pi. The power supply had to function both
from a typical American wall outlet, and from a 9V battery.
It also needed to be as efficient as possible to maximize the
time it could run off of a 9V battery. The Raspberry Pi could
handle currents up to 825 mA, but has been tested to have
optimal (minimal) power consumption when drawing 20 mA
of current.

PHEBCS was designed with the author’s house specifi-
cally in mind. An illustration is included in Figure 2 for a
demonstration of the large windows typical of a passive house.
Additionally, the RF controlled blinds can be seen where they

Fig. 2. The author’s house

have been installed over the windows.

II. CIRCUIT DESIGN

The overall block diagram is laid out in Figure 3. The
wind sensor and temperature sensor flow into the Raspberry
Pi responsible for instructing to raise or lower the blinds based
on received information. Blocks surrounded in red will only be
simulated; the remaining modules will also be built physically.
We tried to make sure that the projected could be completed
remotely and asynchronously, which proved to be no small
feat.

Fig. 3. Block diagram of PHEBCS

A. Power Supply-Nancy

The power supply had two main modes of functionality:
a normal, wall-outlet mode and a power-outage, 9V battery
mode. In the Normal mode, the power supply needed to take
the 120V AC from the wall and turn it into 3.3-5V DC.
Additionally, the Raspberry Pi could only handle currents up
to 825 mA. In power-outage mode the system had to take
9V DC and turn it into 3.3-5V DC. I learned that in order
to minimize the power consumption of the Raspberry Pi, one
should run the clock at 20 MHz and with an input current of
about 20 mA, hence the decision to set the output current at
20 mA.

For normal operation, the voltage is stepped down, then
rectified and smoothed, then stepped down further. This was
accomplished with a step-down transformer, a Full-Wave
Bridge Rectifier with a smoothing capacitor, and a switching
voltage regulator, also known as a Buck Converter.

For the Transformer and Bridge Rectifier, the VPP24–1250
transformer was used to step down the wall outlet voltage from
120 V AC to 12 volts AC. This was the voltage decided so that
once it went through the recitifier and selection circuit it would
be high enough to power the IC and it would provide a high
enough voltage for the selection circuit to function properly.
Then, for the Bridge Rectifier Schottky diodes were used to
minimize power consumption. The CMDSH2-3 was chosen
because of its low forward voltage (.3 Volts) and suitable
reverse breakdown voltage of 30 Volts. This was more than
enough for this application. For the smoothing capacitor, we
used a 100 µF capacitor to minimize the voltage ripple on the
output voltage. This resulted in a 0.4 V ripple on the rectified
signal.

Fig. 4. Power Supply Layout

Fig. 5. Power Supply Schematic

For operation during a power-outage, the voltage just needed
to be stepped down. To accomplish this, the 9V battery was
connected to the Buck-converter.

To switch between the two modes, a simple selection circuit
was made with two diodes and a capacitor. This way, when
the capacitor was charged up from the wall, the potential
difference and the diode would block current flow.

To step-down the voltage we chose to use a switching buck
converter topology rather than a linear regulator. We made
this choice because this would conserve energy and be much
more efficient. For the Buck converter, a typical buck converter
topology was used, with a IC to control the duty-cycle of the
pulse-width modulation of the mosfet that controls the on/off
cycle of the Buck converter.

The Buck converter works steps down the input voltage and
steps up the input current by switching between an on state
in which the current through the inductor increases and an off
state. During the on state, the mosfet allows current to flow
resulting in a voltage drop across the inductor equal to the
difference between Vout and Vin. In the off state, the stored
energy in the inductor enables it to behave as a current source
and the current through the inductor decreases with a slope
equal to -Vout/L.

The IC chosen was the LM2678. This one was chosen
because of its high-efficiency PWM control. While other IC’s
were found that would’ve likely been more efficient at these
values of output current and output voltage, unfortunately
there were no LTspice equivalents for them (although there
were encrypted pSpice simulations available from TI as well
as ’Tina-TI’ models). This IC measures the output of the
Buck Converter, and from the amplified error adjusts the duty
cycle of the mosfet that drives the On-Off cycle of the Buck
converter. The mosfet is an N-channel power MOSFET, which
means it has a low on resistance, but a higher Vgs. To meet
this higher Vgs, the IC has a pin for a bootstrap capacitor.
This bootstrap capacitor works as a step-up charge pump to
raise the Vgs of the mos within the IC. This demonstrates the
need for an external input voltage for the IC. The IC has an
internal oscillator crystal that has a switching frequency of
260 kHz. This higher switching frequency generally means
increased efficiency. In normal mode, the Buck converter had
a duty cycle of about 30 percent; in power-outage mode the
duty cycle was about 36 percent.

Using this IC had certain challenges. The primary one was
setting the output current. It was tricky to drive such a low
current with this IC. When trying to drive down the output
current, there was a little trouble with the mode of conduction
of the Buck converter. There were some iterations that would
operate in discontinuous conduction mode, meaning the cur-
rent in the inductor falls below zero before the end of a single
cycle. This resulted in strange behavior including increased
losses and noise in the output voltage. Other losses were
likely due to the inductor chosen (MSS1210) . This specific
680 microhenry inductor was chosen because of its ability to
handle currents of up to 1.3 Amps and the amount of current it
could drive, although it does have a series resistance of about
500 milliOhms. This inductance value was determined from
the following equation:

L = V out× (1 −D) ÷ (f ×DeltaI)

where

D = V out ÷ V in

and ∆I is the change in current from the input current to the
output current.

The final design is operating in continuous conduction
mode, meaning that the current through the inductor doesn’t
fall below zero. However, throughout the design process as the
current was driven lower and lower, the conduction mode of
the Buck converter teetered on the border between continuous
and discontinuous, with the inductor current dropped to just 3
mA at its lowest point in a single cycle. This mode of operation
introduced a lot of loss into the system, and is likely why
I ended up with the efficiency that I did. The lower power
constraint of the system proved to be more challenging to
overcome than expected.

Furthermore, before achieving steady state, the circuit
reaches a voltage of about 5 volts. Since the Raspberry Pi
can only handle up to 5 V, I tried to mitigate this voltage
peak with a Zener diode. However, when the Vout exceeds the
breakdown voltage, the current through the diode is so high
(approximately -90mA) that in real life this would only work
once before frying the Zener diode. It would act as a fuse
rather than the intended regulator.

Mark suggested using the soft start pin of the IC to reduce
the initial output voltage spike. The LTspice model of this
IC doesn’t have a pin for this, however there is a way to
implement the same functionality without the pin. You can
use the feedback and output pins to ’trick’ the feedback pin
so that it seems as though the output voltage is higher than
it is. This then reduces the PWM duty cycle, decreasing the
output voltage.

If the circumstances were different,(i.e sans COVID-19) I
likely would’ve went without using the IC to control the PWM
of the Buck Converter. Instead, I would’ve and driven an N-
channel power mosfet with a square-wave of a varying duty
cycle based on the error of the output voltage. Nonetheless,
this was a valuable experience with simulation tools and circuit
design.

Fig. 6. Voltage peak with no Zener diode and with the soft-start circuit

B. Temperature Sensor - Julia

To design a temperature sensor for inside the house, a pro-
portional to absolute temperature (PTAT) circuit was chosen to
leverage the temperature variations of BJTs to create a current
output that is linearly dependent on temperature, which can
then be used to measure the indoor temperature.

Fig. 7. A schematic of the PTAT current source

The first step of the design process was to design a current
source that is dependent on temperature. The schematic for
the current source may be found in Figure 7. Due to the 1:2
ratio between Q1 and Q2, and the 2:1 ratio between Q3 and
Q4, we may determine that

IC2 = 2IC1

IC4 = 2IC3

IS3 = 2IS4

We also can define the voltage over the resistor Rx as

Vx = VBE4 − VBE3

Vx = Vthln

(
IC4

IS4
− IC3

IS3

)
Vx = Vthln

(
IC4IS3

IC3IS4

)

Vx = Vthln(4)

where Vth = kT
q . Finally, to find IPTAT , we know Vx is

related by the following

Vx = IC3Rx

IC3 =
1

2
IC4

IPTAT = IC4 =
2Vthln(4)

Rx

While we cannot know the exact IS dependence of each
of the transistors, we can use the ratios that we know from
matching transistors fabricated next to each other on a die. The
addition of parallel BJTs at Q2 and Q3 is crucial to creating
a large VBE difference between Q3 and Q4. [3]

We may now turn out attention to the transimpedance
amplifier. The inverting input of the transimpedance amplifier
is connected to IPTAT of the current source. Rf connects Vout
with the inverting input of the op-amp to create a feedback
loop. The non-inverting input is biased at 1V to maintain
the same voltage at the inverting input. The feedback resistor
creates the relationship

Vout = IfRf

The resistor Rp is in place to subtract a constant current
from IPTAT to uniformly decrease Vout and avoid railing the
op-amp. The value for Rp was calculated to consume 1 mA
of current by

Rp =
5V − 1V

1mA
= 4kΩ

The current in the feedback loop then becomes .5 mA to .9
mA so Rf then becomes

Rf =
2.5V − 1V

.5mA
= 3kΩ

since the ideal voltage range is from about 2.5 V to 3.5
V. In reality, the measured current was a bit higher than in
simulation, so Rf was decreased to 2kΩ to proportionally
decrease Vout.

The result of these design considerations can be seen in
Figure 8. The analog voltage at Vout will be connected as an
input to the Raspberry Pi to assist the logic in determining the
blinds state based on the interior temperature.

C. Wind Sensor - Julia

The wind sensor was designed to be placed outside to
measure the speed of the wind. For the wind sensor, we used
a Hall sensor and an anemometer (Figure 9) with a magnet
attached to one of the cups to measure the relative wind
speed. Because the wind sensor has to be placed far from
the temperature sensor and the Raspberry Pi, RF transmitters
and receivers were used to send the generated signal.

The general schematic for this circuit may be seen in Figure
10. The behavior of the Hall sensor is shown in Figure 11.
Essentially, the Hall sensor outputs a high voltage when there

Fig. 8. Schematic for PTAT on-chip thermometer circuit

Fig. 9. Anemometer used for project

is no magnetic force nearby, but when an object like a magnet
creates magnetic flux, the output goes to zero. The design in
Figure 10 uses an NPN to invert this output so that the antenna
then transmits only when there is a magnet nearby.

This system was designed with a low-power constraint in
mind. Since the module was intended to be battery powered,
it should be able to last as long as possible before switching
the battery. By leveraging the inverse output of the BJT, the
power consumption of this circuit was significantly lowered.

Fig. 10. Schematic for wind sensor

The greatest challenges in designing this module were the
range of transmission and communication protocol. The range
of the purchased transmitter was directly related to the voltage
applied to Vcc, which made a 9V battery preferable to a
smaller voltage. Additionally, it was discovered that the blinds
send a constant pulse which created a lot of noise at the
same frequency. In order to improve this design, a stronger
communication protocol should be added to ensure that the

Fig. 11. Behavior of Hall sensor

Raspberry Pi successfully receives the signal from the wind
sensor.

D. RF Sniffer

In order to be able to send a signal the blinds would
recognize, the signal sent by the remotes had to be recorded
and then replicated. This began with inspiration from Ray’s
Hobby [5]. The first attempt involved wiring a receiver with
an audio jack at the digital output and then recording the output
in the sound mixing software Audacity. While this method was
effective, the next solution was better once the project moved
on board the Raspberry Pi.

The next method for RF sniffing involved the GPIO func-
tions included with Raspberry Pi. Please reference the ap-
pendix for the code ReceiveRF.py that was used to capture
and graph each signal so that it could be broken down into 0s
and 1s for re-transmission [2].

E. Software - Nancy and Julia

In order to control the blinds, the Raspberry Pi was pro-
grammed to take the information from the wind sensor and
temperature sensor, and then decode it and determine whether
the blinds should be raised or lowered. Then it had to send
commands to connected RF transmitter to control the blinds.
The script ”PHEBCS.py” is available for reference in the
appendix.

The first step was to decode the wireless signal sent by the
existing blinds remotes as discussed in the previous section.
The programming then uses this information to transmit to the
blinds upon command.

The script also receives the signal from the wind sensor
and counts the instances where there is a clear zero because
that is when the air became clear based on observation. If
the threshold number of zeros was reached, the blinds would
open to protect them from wind damage. This algorithm is
not as robust as it could be and would benefit from a better
communication protocol with the wind sensor.

The script also needed the temperature in order to execute
its logic. For demonstration purposes, the Raspberry Pi script
fetched the temperature from a website using an API. This was
the ultimate reason to switch to Raspberry Pi from Arduino

since the Teensy 3.2 does not have WiFi capabilities. A
more complex code to fetch the indoor temperature of the
house was attempted but a lag in driver software ultimately
created a problem outside the scope of this project. The script
”java test.py” in the appendix documents this attempt for
when GeckoDriver becomes available for the correct version
of Firefox.

F. Receiver - Julia

In order to quickly implement this project, a finished
receiver 12 was ordered for the physical build. Simultaneously,
a receiver module was designed and laid out for future use.

Fig. 12. Receiver used for physical build

The schematic of the receiver module may be seen in Figure
13. A larger view may be seen in the appendix.

Fig. 13. Schematic of receiver module

In the first stage of the layout, the front-end regenerative
receiver uses positive feedback to increase the gain of the
incoming signal. L1 and C4 form the LC tank that is tuned
to 433 MHz. The two stages in the middle are designed to
differentiate between a signal at the desired frequency and
noise. Lastly, the 555 timer compares the input voltage and
will output high or low to indicate the presence of incoming
data.

G. Transmitter - Julia

The transmitter pictured in Figure 14 was purchased with
the receiver in order to speed the project timeline.

Fig. 14. Transmitter used for physical build

The schematic of the receiver module may be seen in Figure
15. A larger view may be seen in the appendix.

Fig. 15. Schematic of transmitter module

The data to be transmitted enters as a pulse and turns U2
(an NPN) on and off. The SAW resonator provides a 433MHz
wave at Q4. Current flows when both are on and scales to
create a wave at the antenna output over C8.

Adding an antenna to both transmitter and receiver signifi-
cantly help with communication success and increasing range.
A quarter-wave dipole at 433MHz should be about 17cm long
[1].

III. RESULTS

A. Power Supply

The power supply ended up working mostly as expected.
The output voltage and current did meet the constraints
previously mentioned, with the output current at 20 mA and
the output voltage at 3.3 V with a ripple of +/- 4 millivolts.

Fig. 16. Output of final design

There were two unexpected behaviors: the startup behavior
and the overall efficiency. While some noise can be expected
from the series resistance of the capacitor, I didn’t expect
there to be such a large spike in the first millisecond of

operation. This is likely because the 9V battery is so close
to the minimum input voltage of the IC (8 V). This could be
corrected with a soft-start circuit or with the selection of a
different control IC (like the TPS62175 which is specifically
designed for light loads like this one).

The second of the unexpected behavior was the low effi-
ciency of the system. When being powered by the battery the
system was only about 60 percent efficient, which is rather low
for this topology. As mentioned previously in the circuit design
section, this is likely due to the low power load. Nonetheless,
it only dissipates about 55 milliwatts of power. Since the
typical 9V battery has about 5 watt-hours when discharging
10mA, a typical 9V battery could theoretically power the Buck
Converter for more than the proposed two day-long power
outage. The final design draws about 8mA of current from the
9V battery, so this could work.

However, as batteries discharge their output voltage drops
over time, which would be another factor to take into account.
Batteries are considered to be ’dead’ when they drop below
50 percent of their original output voltage. As currently
designed, our system is constantly checking the current wind
and temperature conditions. The IC needs 8 Volts to function,
and with similar applications, the 9V battery would likely drop
below this at around 10 hours. The soft-start circuit could help
with this, as it lowers the current the IC initially draws from
the 9V battery. This would prolong the life of the battery when
compared to the original circuit.

Generally the circuit functions as intended, although there
are a few ways in which the circuit could be modified for a
longer lasting, more efficient system.

B. Power Supply Schematic and PCB Layout
Doing the power supply schematic was a tedious but useful

exercise. Tracking down the different footprints and 3D models
for the different parts was frustrating at times but will be
invaluable experience in industry.

Fig. 17. Schematic of the Power Supply from KiCad

Note that in the schematic a custom footprint was used
for the AC Power Entry Connector (6160.0141), but for

Fig. 18. PCB Layout

Fig. 19. 3D Rendering

demonstrative purposes a generic DC Barrel Jack was used
in the 3D rendering.

C. Temperature Sensor

First, the model of the circuit can be evaluated by hand and
in LTSpice. Figure 20 shows the output voltage over temper-
ature by both LTSpice simulation and hand calculation. The
LTSpice model is about 0.7V lower, although both predicted
about the same change in voltage per degree Celsius.

In order to measure the temperature of the die, the device
breakout board included a flat chip temperature sensor con-
nected between two pins, as seen in Figure 21. The resistance
of the chip was related to the temperature by the equation

R = 100(1 +AT +BT 2)

The Peltier module was heated until the temperature sensor
reached the specific resistances corresponding to each temper-
ature. Then the output voltage was measured and recorded.
The plot in Figure 22 compares the measured results to the
LTSpice simulation. The linear regression of the measured
data has an R2 value of .9985, meaning the output voltage
of the temperature sensor is almost perfectly linear. The slope
of trend line is 1.7 V per 100 ◦C.

However, there is a clear, curving trend in the variation
between the linear trend and the data points as can be seen in
Figure 23. This may be due to imperfections in the matching
of IS of the transistors in parallel.

Fig. 20. Output voltage over temperature by hand calculation and LTSpice
simulation

Fig. 21. Experimental setup, including the temperature sensor connections

There were also noticeable differences between the calcu-
lated, simulated, and measured output voltages. This could be
because of imperfections in the breadboard. It was difficult to
maintain proper ground and power due to the larger amount
of current flowing through the rails of the board, which then
acted as resistors. Due to this phenomenon, measured ground
was tens to hundreds of microvolts above 0V and 5V was a
few millivolts below the theoretical 5V as well.

One design change that helped improve the performance
of the circuit on the bench was to upgrade from the LM741
to the LM6132. The LM741 had non-ideal behavior when it
railed at 1.3V and 4.2V and maintained a voltage of 1.8V at
the inverting input, regardless of the bias voltage at the non-
inverting input. The switch to the LM6132 widened the rails

Fig. 22. Measured output voltage by temperature, as compared to LTSpice
results

Fig. 23. Variation in measured output voltage by temperature

and allowed the voltage at the inverting input to be set to 1V.
Despite these challenges, the PTAT is a useful choice for the

purpose of this project. A PTAT temperature sensor is fairly
predictable because the output depends on the ratios of the
currents of the transistors together rather than their individual
exact values. However, the thermal response of the PTAT
circuit needs to be calibrated to achieve very high accuracy
each time a new chip is made due to variations in production
processes [4]. After including a more robust op-amp, this
circuit is dependable and perfectly suited for the application.
The designed sensor achieves a 1.7V voltage swing per 100◦C
temperature change and operates from 15◦C to 95◦C with
excellent linearity and precision.

D. Wind Sensor

After building the wind sensor, several observations can be
gathered. First, the wind sensor was working successfully in
that the change in voltage could be observed as expected when-
ever the magnet passed by the Hall sensor. This signal was
also capable of reaching the receiver and could be observed

there. Several improvements could be made. First, it must
next be made weather proof by placing the in a Tupperware
or other housing so that it may work well outside, which is
an important thing to consider when designing anything for
physical implementation. Second, it was discovered the Hall
sensors may be broken by a voltage that is too high or by static
electricity (thus the use of an ESD bag). Caution should be
used when handling sensitive devices. Finally, further design
would be helpful to improve the communication protocol of
this device. The operating environment turned out to be fairly
noisy which made it easy for the un-tagged pulses to be lost.

E. Receiver

The final board can be seen in Figure 24. The receiver was
useful both for recording the signal from the original remote
and for receiving the signal for the wind sensor.

Fig. 24. Implementation of receiver with Raspberry Pi

In Figure 25, one of the eight pulses issued by a remote is
shown. The signal was converted into zeros (short high value,
long low value) and ones (long high value, short low value).
The total signal consists of four of one pattern and then four
of another pattern for a total of 8 signals like the figure.

Fig. 25. Measured signal on receiver from remote

This method of decoding the original signal was very useful,
but as previously discussed the communication protocol with

the wind sensor could be improved for future work. One idea
is to make the protocol similar to that of the remotes.

F. Transmitter

The final board can be seen in Figure 26. The transmitter
was useful for sending a signal from the wind sensor and to
the blinds on command.

Fig. 26. Implementation of transmitter with wind sensor

In Figure 27, the signal sent from the transmitter to the
blinds is shown. The Raspberry Pi was well suited for the
frequency needed and was very reliable sans coding errors
despite general noise from other sources.

Fig. 27. Physical transmitter output signal

For future work, more study on the exact voltage to range
relationship could be looked at in order ton understand how
much power is required to overcome noise.

As for the simulation of the transmitter, the results turned
out well. It was very interesting to find a working method for
the SAW resonator. The output of the transmitter can be found
in Figure 28 of a high data input followed by a low input.

G. PCB Development - Julia

This section demonstrates the development process for the
transmitter and receiver. The layout is shown in Figure 29.

Figure 30 shows the the 3D render of the board design. In
some cases it may be useful for the board pins to be on the
bottom, but they have been designed to connect with jumper
wires to a Raspberry Pi in this case.

Fig. 28. Simulated transmitter output signal

Fig. 29. PCB transmitter and receiver board layout

IV. CONCLUSION

Overall, this system is a promising start at a robust system to
automate passive houses and improve environmental sustain-
ability. The greatest improvements to be made for future work
are a more robust communication protocol and the addition of
more sensors. The transmitter for the wind sensor did not have
a particular method of identifying itself to the receiver which
made it tricky to discern the signal from other noise. Building

Fig. 30. 3D render of transmitter and receiver PCB

the temperature sensor and adding a module to measure direct
sunlight would be excellent improvements to the accuracy of
the system’s logic and decision making.

REFERENCES

[1] Electro-tech online, Them pesky cheapo 433Mhz transmitters!,
https://www.electro-tech-online.com/threads/them-pesky-cheapo-
433mhz-transmitters.143245/, 2014.

[2] Instructables, Super Simple Raspberry Pi 433MHz Home Automation,
”https://www.instructables.com/id/Super-Simple-Raspberry-Pi-
433MHz-Home-Automation/”, n.d.

[3] Kent H. Lundberg, Become One with the Transistor, Unpublished
Preprint, 2005.

[4] Dexin Kong and Fengui Yu, An auto-calibration technique for BJT-based
CMOS temperature sensors, IEICE Electronics Express, 2017.

[5] Ray’s Hobby Net, Reverse Engineer Wireless Temperature / Hu-
midity / Rain Sensors, ”https://rayshobby.net/reverse-engineer-wireless-
temperature-humidity-rain-sensors-part-1/”, 2014.

[6] Everett Rogers, Understanding Buck Power
Stages in Switchmode Power Supplies,
”http://www.ti.com/lit/an/slva057/slva057.pdf?&ts1̄589333654796”,
1999.

[7] Jens Ejury Buck Converter Design
”https://www.mouser.de/pdfdocs/BuckConverterDesignNote.pdf”,
2013.

APPENDIX

A. ReceiveRF.py

1 from datetime import datetime
2 import matplotlib.pyplot as pyplot
3 import RPi.GPIO as GPIO
4

5 RECEIVED_SIGNAL = [[], []] #[[time of reading], [
signal reading]]

6 MAX_DURATION = 5
7 RECEIVE_PIN = 23
8

9 if __name__ == ’__main__’:
10 GPIO.setmode(GPIO.BCM)
11 GPIO.setup(RECEIVE_PIN, GPIO.IN)
12 cumulative_time = 0
13 beginning_time = datetime.now()
14 print(’**Started recording**’)
15 while cumulative_time < MAX_DURATION:
16 time_delta = datetime.now() - beginning_time
17 RECEIVED_SIGNAL[0].append(time_delta)
18 RECEIVED_SIGNAL[1].append(GPIO.input(

RECEIVE_PIN))
19 cumulative_time = time_delta.seconds
20 print(’**Ended recording**’)
21 print(len(RECEIVED_SIGNAL[0]), ’samples recorded

’)
22 GPIO.cleanup()
23

24 print(’**Processing results**’)
25 for i in range(len(RECEIVED_SIGNAL[0])):
26 RECEIVED_SIGNAL[0][i] = RECEIVED_SIGNAL[0][i

].seconds + RECEIVED_SIGNAL[0][i].microseconds
/1000000.0

27

28 print(’**Plotting results**’)
29 pyplot.plot(RECEIVED_SIGNAL[0], RECEIVED_SIGNAL

[1])
30 pyplot.axis([0, MAX_DURATION, -1, 2])
31 pyplot.show()

B. PHEBCS.py

1 import time
2 import sys
3 from datetime import datetime
4 import matplotlib.pyplot as pyplot
5 import RPi.GPIO as GPIO
6 #from dot3k import lcd
7 import requests
8

9 RECEIVE_PIN = 23
10 TRANSMIT_PIN = 24
11

12 blind_state = 1 #0 = closed, 1 = open
13 zero_count = 0
14 NUM_ATTEMPTS = 4
15

16 down1 = ’1110101000110010101011010101000100110011’
17 down2 = ’1110101000110010101011010101000100111100’
18 up1 = ’1110101000110010101011010101000100010001’
19 up2 = ’1110101000110010101011010101000100011110’
20 dad_down1 = ’

1110100100110010101100101011000000110011’
21 dad_down2 = ’

1110100100110010101100101011000000111100’
22 dad_up1 = ’1110100100110010101100101011000000010001’
23 dad_up2 = ’1110100100110010101100101011000000011110’
24 stop = ’1110101000110010101011010101000101010101’
25 short_delay = 0.00036
26 long_delay = 0.00070
27 extended_zero = 0.01043
28 extended_one = 0.00478

29 gap_zero = 0.00154
30

31 GPIO.setmode(GPIO.BCM)
32 GPIO.setup(TRANSMIT_PIN, GPIO.OUT)
33 GPIO.setup(RECEIVE_PIN, GPIO.IN)
34

35 ###RECEIVE CODE
36 def wind():
37 global zero_count
38 incoming = GPIO.input(RECEIVE_PIN)
39 if incoming == 0:
40 zero_count = zero_count + 1
41 else:
42 zero_count = 0
43 if zero_count > 10:
44 change = datetime.now()-last_time
45 if change < 1:
46 blinds(1) #open the blinds due to high

wind
47 #lcd.write(’High windspeeds’)
48 last_time = datetime.now()
49 return
50

51 ###GET TEMPERATURE
52 def temp():
53

54 r = requests.get(’http://api.openweathermap.org/
data/2.5/weather?zip=45385,us&appid=
a818dce96a521dcfddbd80799d426148’)

55 r = r.json()
56 temp = r["main"]["temp"]
57 temp = 1.8*(temp-273.15)+32 #in farenheit
58

59 if temp > 80:
60 blinds(0) #close blinds
61 if temp < 65:
62 blinds(1) #open blinds
63 return temp
64

65 def transmit(code1, code2):
66 ’’’Transmit a chosen code string using the GPIO

transmitter’’’
67 GPIO.setmode(GPIO.BCM)
68 GPIO.setup(TRANSMIT_PIN, GPIO.OUT)
69 for t in range(NUM_ATTEMPTS):
70 for i in code1:
71 if i == ’0’:
72 GPIO.output(TRANSMIT_PIN, 1)
73 time.sleep(short_delay)
74 GPIO.output(TRANSMIT_PIN, 0)
75 time.sleep(long_delay)
76 elif i == ’1’:
77 GPIO.output(TRANSMIT_PIN, 1)
78 time.sleep(long_delay)
79 GPIO.output(TRANSMIT_PIN, 0)
80 time.sleep(short_delay)
81 else:
82 continue
83 GPIO.output(TRANSMIT_PIN, 0)
84 time.sleep(extended_zero)
85 GPIO.output(TRANSMIT_PIN, 1)
86 time.sleep(extended_one)
87 GPIO.output(TRANSMIT_PIN, 0)
88 time.sleep(gap_zero)
89 for t in range(NUM_ATTEMPTS):
90 for i in code2:
91 if i == ’0’:
92 GPIO.output(TRANSMIT_PIN, 1)
93 time.sleep(short_delay)
94 GPIO.output(TRANSMIT_PIN, 0)
95 time.sleep(long_delay)
96 elif i == ’1’:
97 GPIO.output(TRANSMIT_PIN, 1)
98 time.sleep(long_delay)

99 GPIO.output(TRANSMIT_PIN, 0)
100 time.sleep(short_delay)
101 else:
102 continue
103 GPIO.output(TRANSMIT_PIN, 0)
104 time.sleep(extended_zero)
105 GPIO.output(TRANSMIT_PIN, 1)
106 time.sleep(extended_one)
107 GPIO.output(TRANSMIT_PIN, 0)
108 time.sleep(gap_zero)
109 GPIO.cleanup
110

111 def blinds(command):
112 global blind_state
113 if command != blind_state:
114 if command == 1:
115 lcd.write(’Opening blinds...’)
116 transmit(dad_up1, dad_up2)
117 else:
118 lcd.write(’Closing blinds...’)
119 transmit(dad_down1,dad_down2)
120 blind_state = command
121 return
122

123 #infinite loop
124 while True:
125 wind()
126 temp = temp()
127 print(temp)
128 #lcd.write("Inside temperature is" + t_in)
129 #lcd.write("Outisde temperature is" + t_out)
130 #blind status
131 #if blind_state == 1:
132 # lcd.write(’Blinds are open’)
133 #else:
134 # lcd.write(’Blinds are closed’)
135 GPIO.output(TRANSMIT_PIN, 0)
136 time.sleep(120)

C. java test.py

1 import time
2 import sys
3 from datetime import datetime
4 import matplotlib.pyplot as pyplot
5 import RPi.GPIO as GPIO
6 from selenium import webdriver
7 import selenium as se
8 from webdriver_manager.chrome import

ChromeDriverManager
9 from selenium.webdriver.common.by import By

10 from selenium.webdriver.support.ui import
WebDriverWait

11 from selenium.webdriver.support import
expected_conditions as EC

12

13 ###GET TEMPERATURE
14 def temp():
15

16 test = """
17 function wait(ms)
18 {
19 var d = new Date();
20 var d2 = null;
21 do { d2 = new Date(); }
22 while(d2-d < ms);
23 }
24

25 document.querySelector("#login_email").value = "
greg.arnold32@gmail.com"

26 document.querySelector("#login_password").value
= "yynn343C"

27 document.querySelector("#loginBtn").click()
28 """

29

30 test2 = """
31 return document.querySelectorAll(".

sbListIconDetail")[0].children[1].innerText
32 """
33

34 test3 = """
35 return document.querySelectorAll(".

sbListIconDetail")[1].children[1].innerText
36 """
37

38 myscript = test
39 options = se.webdriver.ChromeOptions()
40 options.add_argument(’headless’)
41

42 driver = webdriver.Chrome(ChromeDriverManager().
install())

43 driver.get("https://www.buildequinox.com/cervice
/")

44 result = driver.execute_script(myscript)
45

46 wait = WebDriverWait(driver, 5)
47 element = wait.until(EC.element_to_be_clickable

((By.CLASS_NAME, ’sbListIconDetail’)))
48 t_in = driver.execute_script(test2)
49 t_out = driver.execute_script(test3)
50 driver.quit()
51

52 if t_in > 73:
53 blinds(0) #close blinds
54 if t_in < 68:
55 blinds(1) #open blinds
56 return t_in, t_out

D. TransmitRF.py

1 import time
2 import sys
3 import RPi.GPIO as GPIO
4

5 down1 = ’1110101000110010101011010101000100110011’
6 down2 = ’1110101000110010101011010101000100111100’
7 up1 = ’1110101000110010101011010101000100010001’
8 up2 = ’1110101000110010101011010101000100011110’
9 dad_down1 = ’

1110100100110010101100101011000000110011’
10 dad_down2 = ’

1110100100110010101100101011000000111100’
11 dad_up1 = ’1110100100110010101100101011000000010001’
12 dad_up2 = ’1110100100110010101100101011000000011110’
13

14 stop = ’1110101000110010101011010101000101010101’
15 short_delay = 0.00036
16 long_delay = 0.00070
17 extended_zero = 0.01043
18 extended_one = 0.00478
19 gap_zero = 0.00154
20

21 NUM_ATTEMPTS = 4
22 TRANSMIT_PIN = 24
23

24 def transmit_code(code1, code2):
25 ’’’Transmit a chosen code string using the GPIO

transmitter’’’
26 GPIO.setmode(GPIO.BCM)
27 GPIO.setup(TRANSMIT_PIN, GPIO.OUT)
28 for t in range(NUM_ATTEMPTS):
29 for i in code1:
30 if i == ’0’:
31 GPIO.output(TRANSMIT_PIN, 1)
32 time.sleep(short_delay)
33 GPIO.output(TRANSMIT_PIN, 0)
34 time.sleep(long_delay)
35 elif i == ’1’:

36 GPIO.output(TRANSMIT_PIN, 1)
37 time.sleep(long_delay)
38 GPIO.output(TRANSMIT_PIN, 0)
39 time.sleep(short_delay)
40 else:
41 continue
42 GPIO.output(TRANSMIT_PIN, 0)
43 time.sleep(extended_zero)
44 GPIO.output(TRANSMIT_PIN, 1)
45 time.sleep(extended_one)
46 GPIO.output(TRANSMIT_PIN, 0)
47 time.sleep(gap_zero)
48 for t in range(NUM_ATTEMPTS):
49 for i in code2:
50 if i == ’0’:
51 GPIO.output(TRANSMIT_PIN, 1)
52 time.sleep(short_delay)
53 GPIO.output(TRANSMIT_PIN, 0)
54 time.sleep(long_delay)
55 elif i == ’1’:
56 GPIO.output(TRANSMIT_PIN, 1)
57 time.sleep(long_delay)
58 GPIO.output(TRANSMIT_PIN, 0)
59 time.sleep(short_delay)
60 else:
61 continue
62 GPIO.output(TRANSMIT_PIN, 0)
63 time.sleep(extended_zero)
64 GPIO.output(TRANSMIT_PIN, 1)
65 time.sleep(extended_one)
66 GPIO.output(TRANSMIT_PIN, 0)
67 time.sleep(gap_zero)
68 GPIO.cleanup()
69

70 transmit_code(dad_down1, dad_down2)
71 GPIO.setmode(GPIO.BCM)
72 GPIO.setup(TRANSMIT_PIN, GPIO.OUT)
73 GPIO.output(TRANSMIT_PIN, 0)
74 time.sleep(20)
75 GPIO.cleanup()
76 transmit_code(dad_up1, dad_up2)
77 GPIO.setup(TRANSMIT_PIN, GPIO.OUT)
78 GPIO.output(TRANSMIT_PIN, 0)
79 time.sleep(10)
80 print("clean up")
81 GPIO.cleanup() # cleanup all GPIO

E. Receiver and Transmitter Schematic

The schematic is available on the following page.

